A Single Crossing-Over Event in Voltage-Sensitive Na+ Channel Genes May Cause Critical Failure of Dengue Mosquito Control by Insecticides
نویسندگان
چکیده
The voltage-sensitive sodium (Na+) channel (Vssc) is the target site of pyrethroid insecticides. Pest insects develop resistance to this class of insecticide by acquisition of one or multiple amino acid substitution(s) in this channel. In Southeast Asia, two major Vssc types confer pyrethroid resistance in the dengue mosquito vector Aedes aegypti, namely, S989P+V1016G and F1534C. We expressed several types of Vssc in Xenopus oocytes and examined the effect of amino acid substitutions in Vssc on pyrethroid susceptibilities. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to permethrin by 100- and 25-fold, respectively, while S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to permethrin by 1100-fold. S989P+V1016G and F1534C haplotypes reduced the channel sensitivity to deltamethrin by 10- and 1-fold (no reduction), respectively, but S989P+V1016G+F1534C triple mutations reduced the channel sensitivity to deltamethrin by 90-fold. These results imply that pyrethroid insecticides are highly likely to lose their effectiveness against A. aegypti if such a Vssc haplotype emerges as the result of a single crossing-over event; thus, this may cause failure to control this key mosquito vector. Here, we strongly emphasize the importance of monitoring the occurrence of triple mutations in Vssc in the field population of A. aegypti.
منابع مشابه
Mechanisms of Pyrethroid Resistance in the Dengue Mosquito Vector, Aedes aegypti: Target Site Insensitivity, Penetration, and Metabolism
Aedes aegypti is the major vector of yellow and dengue fevers. After 10 generations of adult selection, an A. aegypti strain (SP) developed 1650-fold resistance to permethrin, which is one of the most widely used pyrethroid insecticides for mosquito control. SP larvae also developed 8790-fold resistance following selection of the adults. Prior to the selections, the frequencies of V1016G and F1...
متن کاملContrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. W...
متن کاملIs it time to rollback dengue? - Mini Review
The past 40 years have seen a dramatic increase in the frequency, magnitude and geographic expansion of epidemic dengue, making it the most important vector-borne viral disease in the world. Mosquito control, the only option available for dengue control, has failed. New and innovative tools in the pipeline, however, may provide the opportunity to rollback this disease. The past 40 years have se...
متن کاملLarvicidal potential of Cyathea species against Culex quinquefasciatus
Resistance to insecticides has persuaded researchers to find new methods to control Culex quinquefasciatus proliferation. Plants may be a source of alternative agents for mosquito control due to ever-growing insecticide resistance in mosquito vectors and environmental imbalance caused by synthetic insecticides. The present study was intended to study the larvicidal activity of selected Cyathea ...
متن کاملMolecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel.
Pyrethroid insecticides are widely used as one of the most effective control measures in the global fight against agricultural arthropod pests and mosquito-borne diseases, including malaria and dengue. They exert toxic effects by altering the function of voltage-gated sodium channels, which are essential for proper electrical signaling in the nervous system. A major threat to the sustained use ...
متن کامل